251 research outputs found

    A Framework for Spatio-Temporal Data Analysis and Hypothesis Exploration

    Get PDF
    We present a general framework for pattern discovery and hypothesis exploration in spatio-temporal data sets that is based on delay-embedding. This is a remarkable method of nonlinear time-series analysis that allows the full phase-space behaviour of a system to be reconstructed from only a single observable (accessible variable). Recent extensions to the theory that focus on a probabilistic interpretation extend its scope and allow practical application to noisy, uncertain and high-dimensional systems. The framework uses these extensions to aid alignment of spatio-temporal sub-models (hypotheses) to empirical data - for example satellite images plus remote-sensing - and to explore modifications consistent with this alignment. The novel aspect of the work is a mechanism for linking global and local dynamics using a holistic spatio-temporal feedback loop. An example framework is devised for an urban based application, transit centric developments, and its utility is demonstrated with real data

    Robust Absolute Stability Criteria for a Class of Uncertain Lur'e Systems of Neutral Type

    Get PDF
    This paper is concerned with the problem of robust absolute stability for a class of uncertain Lur'e systems of neutral type. Some delay-dependent stability criteria are obtained and formulated in the form of linear matrix inequalities (LMIs). Neither model transformation nor bounding technique for cross terms is involved through derivation of the stability criteria. A numerical example shows the effectiveness of the criteria

    Systemic Acrolein Elevations in Mice With Experimental Autoimmune Encephalomyelitis and Patients With Multiple Sclerosis

    Get PDF
    Demyelination and axonal injury are the key pathological processes in multiple sclerosis (MS), driven by inflammation and oxidative stress. Acrolein, a byproduct and instigator of oxidative stress, has been demonstrated as a neurotoxin in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, due to the invasive nature of acrolein detection using immunoblotting techniques, the investigation of acrolein in MS has been limited to animal models. Recently, detection of a specific acrolein-glutathione metabolite, 3-HPMA, has been demonstrated in urine, enabling the noninvasive quantification of acrolein for the first time in humans with neurological disorders. In this study, we have demonstrated similar elevated levels of acrolein in both urine (3-HPMA) and in spinal cord tissue (acrolein-lysine adduct) in mice with EAE, which can be reduced through systemic application of acrolein scavenger hydralazine. Furthermore, using this approach we have demonstrated an increase of 3-HPMA in both the urine and serum of MS patients relative to controls. It is expected that this noninvasive acrolein detection could facilitate the investigation of the role of acrolein in the pathology of MS in human. It may also be used to monitor putative therapies aimed at suppressing acrolein levels, reducing severity of symptoms, and slowing progression as previously demonstrated in animal studies

    Pyroelectric Sandwich Thermal Energy Harvesters

    Get PDF
    Systems, methods, and devices of the various embodiments provide pyroelectric sandwich thermal energy harvesters. In the various embodiment pyroelectric sandwich thermal energy harvesters, generated electrical energy may be stored in a super-capacitor/battery as soon as it is generated. The various embodiment pyroelectric sandwich thermal energy harvesters may harvest electrical energy from any environment where temperature variations occur. The various embodiment pyroelectric sandwich thermal energy harvesters may be power sources for space equipment and vehicles in space and/or on earth, as well as the for wireless sensor networks, such as health monitoring systems of oil pipes, aircraft, bridges, and buildings

    Genome response to tissue plasminogen activator in experimental ischemic stroke

    Get PDF
    Background: Tissue plasminogen activator (tPA) is known to have functions beyond fibrinolysis in acute ischemic stroke, such as blood brain barrier disruption. To further delineate tPA functions in the blood, we examined the gene expression profiles induced by tPA in a rat model of ischemic stroke. Results: tPA differentially expressed 929 genes in the blood of rats (p ≀ 0.05, fold change β‰₯ |1.2|). Genes identified had functions related to modulation of immune cells. tPA gene expression was found to be dependent on the reperfusion status of cerebral vasculature. The majority of genes regulated by tPA were different from genes regulated by ischemic stroke. Conclusions: tPA modulates gene expression in the blood of rats involving immune cells in a manner that is dependent on the status of vascular reperfusion. These non-fibrinolytic activities of tPA in the blood serve to better understand tPA-related complications.Glen C Jickling, Xinhua Zhan, Bradley P Ander, Renee J Turner, Boryana Stamova, Huichun Xu, Yingfang Tian, Dazhi Liu, Ryan R Davis, Paul A Lapchak and Frank R Shar

    Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans

    Get PDF
    Whole genome expression microarrays can be used to study gene expression in blood, which comes in part from leukocytes, immature platelets, and red blood cells. Since these cells are important in the pathogenesis of stroke, RNA provides an index of these cellular responses to stroke. Our studies in rats have shown specific gene expression changes 24 hours after ischemic stroke, hemorrhage, status epilepticus, hypoxia, hypoglycemia, global ischemia, and following brief focal ischemia that simulated transient ischemic attacks in humans. Human studies show gene expression changes following ischemic stroke. These gene profiles predict a second cohort with >90% sensitivity and specificity. Gene profiles for ischemic stroke caused by large-vessel atherosclerosis and cardioembolism have been described that predict a second cohort with >85% sensitivity and specificity. Atherosclerotic genes were associated with clotting, platelets, and monocytes, and cardioembolic genes were associated with inflammation, infection, and neutrophils. These gene profiles predicted the cause of stroke in 58% of cryptogenic patients. These studies will provide diagnostic, prognostic, and therapeutic markers, and will advance our understanding of stroke in humans. New techniques to measure all coding and noncoding RNAs along with alternatively spliced transcripts will markedly advance molecular studies of human stroke

    Correlations of gene expression with ratings of inattention and hyperactivity/impulsivity in tourette syndrome:a pilot study

    Get PDF
    BACKGROUND: Inattentiveness, impulsivity and hyperactivity are the primary behaviors associated with attention-deficit hyperactivity disorder (ADHD). Previous studies showed that peripheral blood gene expression signatures can mirror central nervous system disease. Tourette syndrome (TS) is associated with inattention (IA) and hyperactivity/impulsivity (HI) symptoms over 50% of the time. This study determined if gene expression in blood correlated significantly with IA and/or HI rating scale scores in participants with TS. METHODS: RNA was isolated from the blood of 21 participants with TS, and gene expression measured on Affymetrix human U133 Plus 2.0 arrays. To identify the genes that correlated with Conners’ Parents Ratings of IA and HI ratings of symptoms, an analysis of covariance (ANCOVA) was performed, controlling for age, gender and batch. RESULTS: There were 1201 gene probesets that correlated with IA scales, 1625 that correlated with HI scales, and 262 that correlated with both IA and HI scale scores (P<0.05, |Partial correlation (r(p))|>0.4). Immune, catecholamine and other neurotransmitter pathways were associated with IA and HI behaviors. A number of the identified genes (n=27) have previously been reported in ADHD genetic studies. Many more genes correlated with either IA or HI scales alone compared to those that correlated with both IA and HI scales. CONCLUSIONS: These findings support the concept that the pathophysiology of ADHD and/or its subtypes in TS may involve the interaction of multiple genes. These preliminary data also suggest gene expression may be useful for studying IA and HI symptoms that relate to ADHD in TS and perhaps non-TS participants. These results will need to be confirmed in future studies

    An integrated resource for functional and structural connectivity of the marmoset brain

    Get PDF
    Comprehensive integration of structural and functional connectivity data is required to model brain functions accurately. While resources for studying the structural connectivity of non-human primate brains already exist, their integration with functional connectivity data has remained unavailable. Here we present a comprehensive resource that integrates the most extensive awake marmoset resting-state fMRI data available to date (39 marmoset monkeys, 710 runs, 12117 mins) with previously published cellular-level neuronal tracing data (52 marmoset monkeys, 143 injections) and multi-resolution diffusion MRI datasets. The combination of these data allowed us to (1) map the fine-detailed functional brain networks and cortical parcellations, (2) develop a deep-learning-based parcellation generator that preserves the topographical organization of functional connectivity and reflects individual variabilities, and (3) investigate the structural basis underlying functional connectivity by computational modeling. This resource will enable modeling structure-function relationships and facilitate future comparative and translational studies of primate brains
    • …
    corecore